THESIS
2002
xxiii, 210 leaves : ill. ; 30 cm
Abstract
In this thesis, the materials development and mechanism characterizations of polymer electrolyte fuel cells (PEFCs) are addressed. This work starts with a new preparation technique for a modified electrode structure containing two carbon support materials. The resulted catalyzed electrode, which exhibits good materials properties, demonstrates an improved kinetics in the oxygen reduction reaction (ORR). A new electrocatalyst synthesis procedure utilizing an amphiphilic surfactant to stabilize the nanophase catalyst particles is proposed to fabricate the Pt and Pt-Ru electrocatalysts supported on carbon powders. Physicochemical and electrochemical characterizations of this electrocatalyst show that the nanmeter-scale, well-dispersed catalyst with a high catalytic activity can be obtained...[
Read more ]
In this thesis, the materials development and mechanism characterizations of polymer electrolyte fuel cells (PEFCs) are addressed. This work starts with a new preparation technique for a modified electrode structure containing two carbon support materials. The resulted catalyzed electrode, which exhibits good materials properties, demonstrates an improved kinetics in the oxygen reduction reaction (ORR). A new electrocatalyst synthesis procedure utilizing an amphiphilic surfactant to stabilize the nanophase catalyst particles is proposed to fabricate the Pt and Pt-Ru electrocatalysts supported on carbon powders. Physicochemical and electrochemical characterizations of this electrocatalyst show that the nanmeter-scale, well-dispersed catalyst with a high catalytic activity can be obtained.
In addition to developing the electrocatalytic materials, an electrochemical impedance based study, aiming to achieve a better understanding of the H
2/CO and methanol oxidation mechanism, is carried out. Unlike the equivalent circuit fitting model frequently used in the fuel cell community, a mathematical simulation tool, utilizing the impedance theory and the reaction kinetics, is developed. This model not only successfully predicts the effects of applied potentials to the impedance but also captures most of the impedance characteristics found in the experiments. In particular, the occurrence of the "pseudo inductive" behavior observed both in the experiments and simulations can be used as an effective criterion for the onset of surface CO oxidation. It is believed that the simulation strategy employed in this study can be utilized to assist the materials design of electrocatalysts with improved CO tolerance and high electrocatalytic activity.
Post a Comment