THESIS
2012
xviii, 107 p. : ill. (some col.) ; 30 cm
Abstract
Materials, exhibiting the novel electromagnetic responses those may not be found in nature, have the potential to manipulate the electromagnetic field passing through them. Consequently, these materials promise a number of applications, such as highly sensitive sensor, superlenses, high-gain antennas and electromagnetic wave cloaking. In the literature we would investigate various electromagnetic materials composed from functionalized structures (components). The novel electromagnetic materials can be photonic crystals, which are composed of the periodic dielectric or metallic structures. The propagation of the electromagnetic wave in photonic crystals is affected in the same way as the electrons propagating in the periodic potential in solid. We demonstrated that the photonic crystals...[
Read more ]
Materials, exhibiting the novel electromagnetic responses those may not be found in nature, have the potential to manipulate the electromagnetic field passing through them. Consequently, these materials promise a number of applications, such as highly sensitive sensor, superlenses, high-gain antennas and electromagnetic wave cloaking. In the literature we would investigate various electromagnetic materials composed from functionalized structures (components). The novel electromagnetic materials can be photonic crystals, which are composed of the periodic dielectric or metallic structures. The propagation of the electromagnetic wave in photonic crystals is affected in the same way as the electrons propagating in the periodic potential in solid. We demonstrated that the photonic crystals can be used as a tool to tune the birefringence of the electromagnetic field. Metamaterials, which are composed of the artificial structures exhibiting strong local resonances, are also a kind of novel electromagnetic materials. The strong local resonance can squeeze the wavelength of the incoming electromagnetic field to the subwavelength region (i.e. superlenses) and revise the effective electromagnetic response of the materials (i.e. the negative indexes). For metamaterials we focus on the Plasmonic metamaterials in the thesis: we would show that these materials could be used to guide electromagnetic wave or introduce various kinds of extraordinary transmissions, both of which, of course, are achieved at subwavelength region. Moreover, the novel electromagnetic materials can be even the topological insulators, whose non-trivial electronic surface states can have extraordinary responses under the electromagnetic field. These non-trivial quantum hall surface states can introduce the mode conversion between different electromagnetic modes on the surfaces of the topological insulators and thus modify the propagation properties of the electromagnetic field through them. We would demonstrate that the non-trivial surface states of the topological insulators could modify the coherence of the thermal radiation from them.
Post a Comment