THESIS
2015
x, 52 leaves : illustrations (some color) ; 30 cm
Abstract
Despite advances in promoting axonal regeneration after adult central nervous system injury, elicitation of a large number of lesion-passing axons reform active synaptic connections with natural target neurons remains limited. By deleting both Pten and Socs3 in retinal ganglion cells, we report that optic nerve axons after prechiasm lesion robustly reinnervate the hypothalamus, form new synapses with neurons in the suprachiasmatic nucleus (SCN), and re-integrate with the existing circuitry. Photic or electric stimulation of the retinal axons induces neuronal response in SCN. However both the innervation pattern and evoked responses are not completely restored by the regenerating axons, suggesting combining with other strategies is necessary to overcome the defective rewiring. Our result...[
Read more ]
Despite advances in promoting axonal regeneration after adult central nervous system injury, elicitation of a large number of lesion-passing axons reform active synaptic connections with natural target neurons remains limited. By deleting both Pten and Socs3 in retinal ganglion cells, we report that optic nerve axons after prechiasm lesion robustly reinnervate the hypothalamus, form new synapses with neurons in the suprachiasmatic nucleus (SCN), and re-integrate with the existing circuitry. Photic or electric stimulation of the retinal axons induces neuronal response in SCN. However both the innervation pattern and evoked responses are not completely restored by the regenerating axons, suggesting combining with other strategies is necessary to overcome the defective rewiring. Our results support that boosting the intrinsic growth capacity in injured neurons promotes axonal reinnervation and rewiring.
Post a Comment